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The l amina r  boundary l ayer  at the cr i t ica l  point of an indes t ruct ib le  body of flow of ionized 
a i r  pass ing around it is analyzed using refined t r ans fe r - coe f f i c i en t  data [1]. 

1. P resen ta t ion  of the Problem.  Fo r  veloci t ies  of 12-15 k m / s e c  the incident flow of a i r  passing 
through the shock wave is heated to a t e m p e r a t u r e  of 12,000-15,000~ At such high t e m p e r a t u r e s  the a i r  
will be comple te ly  d issocia ted  into a toms ,  and some of the a toms  will be ionized. When par t ly- ionized  a i r  
flows around an indes t ruct ib le  su r face  a mult icomponent  l amina r  boundary layer  is formed;  this com-  
p r i s e s  molecules ,  a toms,  ions, and e lec t rons  which enter  into physicochemical  in terac t ion  with each other.  
In addition to this, the h igh - t empera tu re  gas flow will emi t  s t rong the rma l  energy. 

In this paper  we shall  consider  the influence of d issocia t ion  and ionization on heat t r ans fe r ,  a s suming  
that the boundary l ayer  is opt ical ly thin 

diV~rad = 0. 

Under this condition, the equi l ibr ium s t eady- s t a t e  flow of a mult icomponent  mix tu re  consis t ing of nine c o m -  
ponents (02; N2; NO; O; N; O+; N+; NO+; e-) undergoing the r eac t ions  

O3 ~ 20 + Oo,, 

N~=r 2N -? QN,, 

N O ~ N  + O + QNO, 

O~O+ + e -  +Qo, 

N ~ N  + + e-  +QN, 

NO ~=~ NO + + e -  + QNO + 

may  be descr ibed  by the following s y s t e m  of equations [4]: 

1) the continuity equation for  the mix tu re  of gases  

2) 

a (our) + a ax ~-y (pvr) = 0; 

the diffusion equation for  the chemical  e lements  

P" - - ~ -  - T  a--V- = 

3) the momentum equation 

au au @ a (a_~y) 

(1.1) 

(1.2) 

(1.3) 
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4) the equation of the rmochemica l  equil ibrium, the boundary layer  being in an equi l ibr ium s ta te  

5) Dalton 's  equation 

6) 

v 

V7 ; 
Kp.~ ~ ]=' ..... (p~M) ~ (i = 1, 2 . . . . .  6); 

tn 

~ I  

(1.4) 

9 

~c~M~ = 1; (1.5) 
i ~ l  

the energy equation 

7) the equation of s ta te  

In o rder  to close the s y s t e m  of equations we requ i re  a re la t ionship  between the diffusion fluxes and 
the concentrat ions.  

f o r m  
The equation of diffusion flux vec to r s  (without allowing for  t he rma l  and p r e s s u r e  diffusion) takes  the 

i ~  i §  i "~  

System (1.8) is complemented  by the equation for  the sum of the diffusion fluxes 

9 
= 0. (1.9) 

i = i  

2. Method of Effective Gas Coeff ic ients .  Even for  a smal l  number  of components (4-5), the so lu-  
tion of the s y s t e m  of equations (1.1)-(1.9) in genera l  f o r m  is quite complicated.  An i nc r ea se  in the number  
of components compl ica tes  the prob lem sti l l  fur ther .  

However,  for  the equi l ibr ium case  of flow, the s y s t e m  of equations (1.1)-(1.9) may  be grea t ly  s i m -  
plified by using the method of total  (effective) coefficients developed by Hirschfe lder  [5]. The e s sence  of 
the method is as follows. The the rma l  flux to the wall  may  be expressed  in the f o r m  

k 
dT 

where the f i r s t  t e r m  allows for  heat t r a n s f e r  by conduction and the second by the diffusion of the compo-  
nents. 

The express ion  for  the diffusion flux (without allowing for  t he rma l  and p r e s s u r e  diffusion) was given 
by Hirschfe lder  [5]: 

k 

Ii = - ~  ~ M~MjD i . VX~. (2.2) 
1~1 

In general ,  the mola r  concentrat ion is a function of t e m p e r a t u r e  and p re s su re .  Since in the boundary layer  
(we a r e  considering the neighborhood of the c r i t i ca l  point) al l  the p a r a m e t e r s  except  the p r e s s u r e  (0p/0y 
= 0) a r e  functions of only one coordinate,  the diffusion flux may be expressed  in t e r m s  of the t e m p e r a t u r e  
gradient  
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Fig. 1. Flow of gas around an a x i a l l y - s y m m e t r i c  body. 

0.5 0.4 Fig. 2. Dependence of the h e a t - t r a n s f e r  p a r a m e t e r  A - (Nu/Re Preff) w on the compress ib i l i t y  
(pePe/PwPw) -~ B: 1) T w = 500; 2) I000; 3) 1500; 4) 2000; 5) 2500~ 

k 

�9 h = MiMjD i \ - ~ )  j "vT, (2.3) 

1=1 
where  n is the number  of moles  in unit volume and Dj is the diffusion coefficient of the mult icomponent  
mixture .  

Substituting the expres s ion  for  the diffusion flux (2.3) into Eq. (2.1) we obtain 

k k 
( d x ,  / 

- - q w = [ ~ ' ~ - - E E ( ~ ) M i h ~ M ' D ' \  dT / w J ( ~ y T ) ~  ' (2.4) 
i = l  i = l  

The f i r s t  t e r m  in square  b racke t s  is the t he rma l  conductivity of the f rozen  mixture.  The second t e rm,  a s -  
sociated with d issocia t ion  and ionization p roces se s ,  is called the t he rma l  conductivity of the react ing  
mixture ,  or  the chemical  t he rma l  conductivity 

k k 

( (2.5) 
i=1 /=1 

The sum of these  two coefficients  is called the total  (effective) t he rma l  conductivity 

~ef~ = ~" @ )~them" (2.6) 

Thus the express ion  for  the specif ic  t he rma l  flux to the wall  may  be wri t ten  in t e r m s  of the effective 
t he rma l  conductivity 

dT 
- -q~ = (~e,,)w ( ~ y  )~ - (2.7) 

In the s ame  way we may  define the total  (effective) specif ic  heat of the a i r  at constant p r e s s u r e  

_: . (2.8) 
Cpef~ \ dT / p 

Since the total  enthalpy of the a i r ,  allowing for  the energy of fo rmat ion  of its consti tuents,  equals 

k 

h = ~,  h~ci, (2.9) 

the effective specif ic  heat of the a i r  for  p = const takes the fo rm 

k 

(2.10) Cpeff =Cp-~ hi \ dr /p '  
i=l 
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Fig. 3. Dependence of the h e a t - t r a n s f e r  p a r a m e t e r  c--- 

wall  t e m p e r a t u r e  (Tw = Tw/500).  
N u w  

Fig. 4. Dependence of the h e a t - t r a n s f e r  parameter ]9  = 

compress ib i l i ty  p a r a m e t e r  (t~ePe/llwPw) =-- B: 1) [7]; 2) [3]; 3) [2]. 

on the 

on the 

k 

where  Cp = ~ CpiC i is the specif ic  heat  of the f rozen mix tu re  at  p = const. The second t e rm,  allowing for  

the additional heat assoc ia ted  with d issocia t ion and ionization p roces se s ,  r e p r e s e n t s  the specif ic  heat of the 
r eac t ing  mix ture  at  constant p re s su re .  

3. T rans fo rma t ion  of Coordinates.  Using the method of total coefficients,  we may  s impl i fy  the s y s -  
t em of equations r ep resen t ing  the equi l ibr ium boundary layer  (1.1)-(1.9) by reducing it  to the following: 

1) continuity equation for  the mix ture  

2) momentum equation 

3) energy equation 

Ol 

-~x 0 (p.r) + ~ (pw) = 0; 

o. 0 . _  dp + o (o.). 
o. T 2  + ~176 og - -  d-T Vjy ~ oy : ' 

(3.1) 

(3.2) 

pu-~x @ pV--3y = Oy Cpeff Oy , -~y 1 - -  Preff, ~-y . (3.3) 

Let us consider  the flow of gas  in the neighborhood of the cr i t ica l  point of an a x i a l l y - s y m m e t r i c  body 
(Fig. 1), using the automodel  principle,  by v i r tue  of which all  the quanti t ies depend s imply  on the t r a n s -  
v e r s e  coordinate y, apar t  f rom u, the value of which is proport ional  to the coordinate x. 

The s y s t e m  of par t ia l  differential  equations (3.1)-(3.3) may  be reduced to a s y s t e m  of ord inary  di f -  
fe ren t ia l  equations by using the t r ans fo rmat ions  

x 

= .t" Ixepeuer~dx' 
0 

y (3.4) 
peUer f P dy. 

n -  V ~  Jo ~e 

In the new independent va r i ab l e s  (~ and ~) the s y s t e m  (3.1)-(3.3) takes the form: 

1) momentum equation 

(zf")' + ff" + - ~  (3.5) 
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Fig. 5. Dependence of the reduced spe -  
cific t h e r m a l  flux q w ( R N / p n ) l / 2 ,  k W / m  1.5 
�9 ba r  ~ on the stagnation entlmlpy I0, kJ  
/ k g  of the incident flux: 1) [10]; 2) [9]; 
3) [11]; 4) [11]; 5) [2]; a) au tho r s '  ca l -  
culation; b) [2]. 

flux by v i r tue  of the equation 

2) energy equation 

g' + fg' = o. (3.6) 

The boundary prob lem has the following boundary conditions: 

n = o  f =o, f ;=o ,  e=e ; 
(3.7) 

~ - ~  f ' ( ~ ) ~ l ,  z (~o)-~l .  

4. Resul t s  of the Calculation. The s y s t e m  of equa-  
tions (3.5)-(3.6)with the boundary conditions (3 .7)was solved 
numer ica l ly  using the la tes t  data re la t ing  to t r an s f e r  p rop-  
e r t i es  [1] and the thermodynamic  p rope r t i e s  of a i r  [6]. 

Calculat ions of the heat t r an s f e r  f r o m  the hot gas to the 
wall  we re  ca r r i ed  out over  the range  of va r ia t ion  of s tagna-  
tion enthalpies corresponding to the ionization region (I 0 
= 40-115.103 k J /kg ) .  The stagnation p r e s s u r e  and the wall  
t e m p e r a t u r e  were  var ied  over  a wide range (P0 = 1-100 bar ,  
T w = 500-2500~ As a r e su l t  of each calculat ion the values 
of the h e a t - t r a n s f e r  p a r a m e t e r  (Nu/Re~ were  determined,  
this p a r a m e t e r  being assoc ia ted  with the speci f ic  the rma l  

Nu Io--I~) ( du~ ~ 
(4.1) 

The resu l t s  of the calculat ion a r e  presented  in Figs.  2 and 3. F igure  2 shows the logar i thmic  dependence 
of the p a r a m e t e r  (Nu/Re0.~. Preff) w0.4 on the quantity ( P e P e / P w P w )  for  var ious  wall t empe ra tu r e s .  We see  

that in the ionization region the wall  t e m p e r a t u r e  has a cons iderable  effect on the heat t r ans fe r .  In the 
cr i t ica l  equation for  the h e a t - t r a n s f e r  p a r a m e t e r  

we mus t  the re fo re  introduce the d imens ion less  wall  t e m p e r a t u r e  {Tw = Tw/273).  The curve  in Fig. 3 
r e p r e s e n t s  the re la t ion  between the h e a t - t r a n s f e r  p a r a m e t e r  and the su r face  t empera tu re .  This  re la t ion-  
ship may  be approximated  by a l inear  function to a fa i r  degree  of accuracy .  

Analys is  of the numer ica l  calculat ions yielded the cr i t ica l  equation 

N u )  0.763 (0.75 ~- 2.73. - ~  0.4 i ~Pe .o.185 = , 10 Tw)(PrefO~ ( ~ o ~ )  " (4.3) }' Re,~ 

Figure  4 shows the dependence of the h e a t - t r a n s f e r  p a r a m e t e r ,  r e f e r r e d  to the h e a t - t r a n s f e r  p a r a m -  
e ter  for  pp = const,  on the d imens ion less  quantity ( p e P e / t t w P w )  , which allows for  the compress ib i l i t y  of the 
gas.  The s ame  f igure  shows some r e su l t s  obtained ea r l i e r  for  the dissocia t ion region [7] and also for  the 
ionization region [2, 3]. We see  that in the dissocia t ion region our calculat ion is excel lent ly represen ted  by 
the equation 

given in [8]. Extrapolat ion of curve  (4.4) into the ionization region leads to a cons iderable  deviation f rom 
the calculated and exper imenta l  r e su l t s  obtained for  this region. For  high t e m p e r a t u r e s ,  such as (9-15) 

103~ Eq. (4.3) mus t  be  used. 

Figure  5 shows the dependence of the reduced specif ic  t he rma l  flux on the stagnation enthalpy of the 
incident flow of a i r .  In the d issocia t ion region the t he rma l  flux was calculated by (4.4) 
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qw \--~--o / : 0,712 1+ 0,07 Te,) Prg~ 

I 

X ,o (4.5) 

In this region the theore t ica l  r e su l t s  ag ree  ve ry  c losely  with exper iment  [9, 10]. 

In the ionization region the t he rm a l  flux was calculated by the c r i t i ca l  equation obtained in the presen t  
investigation: 

( RN l l/2 . ( P~ l l/4 " 
qw ~ -~0! = 0.763 (0.75 + 2.73. 10-=:rw)(Pre,)7 ~ • (~ope) ~ (~p~)0,a,5 (i ~ - -  iw ) 2 (4.6) 

, Po / 

F igure  5 a lso  shows the theore t ica l  r e su l t s  of Khoshizaki [2] as  well as exper imenta l  data f r o m  var ious  
authors  [2, 11]. Compar ison between our own resu l t s  and those of [2, 3] showed that, despi te  the con-  
s iderab le  difference in t r a n s f e r  coeff icients  (almost  a fac tor  of two), the d i sc repancy  in the specif ic  t he rma l  
flux was no g r e a t e r  than 7-10% (Fig. 5); this is  ve ry  impor tant ,  s ince at  high t e m p e r a t u r e s  there  a r e  no 
re l i ab le  data for  the t r a n s f e r  coefficients in the ionization region. 

Compar i son  between the r e su l t s  of the calculat ion and exper imenta l  data [2, 11] obtained in e l ec -  
t r i c a l - d i s c h a r g e  shock tubes showed (Fig. 5) that the r e su l t s  of the calculat ion agreed  with exper iment  to 
an accu racy  of 15%. 

x, y 
U ,  V 

ci 

h 
P 
P 
T 

k 

Mi 

k 
R~= ~ if 

i=l 

P 
M 
Mi 

Dij r 

hi = 5 %i dr +h2 
0 

k U 2 
I= ]~h,~,+ T 

i = l  fi 
Nu 
Re 

Pre f f  
)tell 
~t 

)tehem 
qw 
qrad 
tl N 

N O T A T I O N  

a r e  the coordinates;  
a r e  the veloci ty  components ,  m / s e c ;  
is  the weight propor t ion of the i - th  component;  
is the 
is the 
is the 
is  the 

is  the 

diffusion flux of the i - th  component,  k g / m  2. sec;  
density,  kg /ma ;  
p r e s s u r e ,  bar ;  
t empera tu re ,  ~ 

weight propor t ion of the chemical  element;  

is the diffusion flux of the chemical  element;  

is the v i scos i ty  of the mixture ,  k g / m .  sec; 
is the molecu la r  weight of the mixture ;  
is the molecu la r  weight of the i - th  component;  
is  the coefficient of b inary  diffusion, m 2 / s e c ;  

is the total  enthalpy of i - th  component,  k J / k g ;  

is the total  enthalpy of the mixture ,  k J / k g ;  

is the universa l  gas constant,  J / m o l e "  degK; 
is the Nussel t  number;  
is the Reynolds number;  
is the effective Prandt l  number;  
is the effective t he rma l  conductivity, k W / m - d e g K ;  
is the f rozen  the rma l  conductivity, k W / m -  deg K; 
is the chemical  t he rma l  conductivity, k W / m .  deg K; 
is the convective specif ic  t he rma l  flux, kW/m2; 
is the radiant  specif ic  t he rma l  flux, kW/m2;  
is  the radius  of nose, m. 

S u b s c r i p t s  

w denotes the wall; 
e denotes the externa l  boundary; 
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0 denotes the stagnation paramete rs ;  
eff denotes the effective (total); 
i denotes the component; 
~- denotes the element; 
v denotes the differentiation with respec t  to coordinate ~?. 
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