HEAT TRANSFER AND THE LEADING CRITICAL POINT

OF AN INDESTRUCTIBLE BODY WASHED BY A FLOW
OF PARTLY-IONIZED AIR

V. 8. Avduevskii and G. A. Glebov UDC 536.244:533.601.16

The laminar boundary layer at the critical point of an indestructible body of flow of ionized
air passing around it is analyzed using refined transfer-coefficient data [1].

1. Presentation of the Problem. For velocities of 12-15 km/ sec the incident flow of air passing
through the shock wave is heated to a temperature of 12,000-15,000°K. At such high temperatures the air
will be completely dissociated into atoms, and some of the atoms will be ionized. When partly-ionized air
flows around an indestructible surface a multicomponent laminar boundary layer is formed; this com-
prises molecules, atoms, ions, and electrons which enter into physicochemical interaction with each other.
In addition to this, the high-temperature gas flow will emit strong thermal energy.

In this paper we shall consider the influence of dissociation and ionization on heat transfer, assuming
that the boundary layer is optically thin

divy, = 0.
Under this condition, the equilibrium steady-state flow of a multicomponent mixture consisting of nine com-
ponents (O,; Ny; NO; O; N; OF; N¥; NO*; e7) undergoing the reactions
0,==20 + Qo,,
N,== 2N + Qu,,
NO=N + 0 + Quo,
0=0" + e -+ Qo,
N=N* + e + Q
NO=NO* + e+ Quot
may be described by the following system of equations [4]:

1) the continuity equation for the mixture of gases

2 (pur) + 9 (por) = 0; a.1)
ox dy
2) the diffusion equation for the chemical elements
a, de, . oK . (1.2)
T 0 s + Lo 0 = 0) » :
P4 5% +e Jy dy (v M
3) the momentum equation
ou Ou dp 0 [ du
i — —_— _ — ; 1.3
P TP, ix o ( 0y) @3
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4) the equation of thermochemical equilibrium, the boundary layer being in an equilibrium state

e
Kpi=E—@M* =12 ..., 6 (1.4)
[ e
f=1
5) Dalton's equation
9
EEZ.Mi = 1 (1.5)
=1
6) the energy equation
or o @ ([, 0T\, 8 [ 0 [u\ IR
U—F- U = — [ — + — | — | —=— | —— hi'i); (1.6)
P T 0y< 0.1/,)~'—0y[}L ay(2 )] dy (; "
7) the equation of state
9
p =pRT E—Ci. (1.7

In order to close the system of equations we require a relationship between the diffusion fluxes and
the concentrations.

The equation of diffusion flux vectors (without allowing for thermal and pressure diffusion) takes the
form

~ 9 - 9 - I —
¢ 2 j _QEC_J — E(ﬁ_""—zi .a&) X (1.8)
[ d D;; p - D;; 4 oy oy

IE j=1

System (1.8) is complemented by the equation for the sum of the diffusion fluxes

MR, 0. (1.9)
i=l
2. Method of Effective Gas Coefficients. Even for a small number of components (4-5), the solu-
tion of the system of equations (1.1)-(1.9) in general form is quite complicated. An increase in the number
of components complicates the problem still further.

However, for the equilibrium case of flow, the system of equations (1.1)-(1.9) may be greatly sim-~
plified by using the method of total (effective) coefficients developed by Hirschfelder [5]. The essence of
the method is as follows. The thermal flux to the wall may be expressed in the form

— Gy = A (ET—) —g(h-f-) 2.1)
4 Jo =l

where the first term allows for heat transfer by conduction and the second by the diffusion of the compo-
nents,

The expression for the diffusion flux (without allowing for thermal and pressure diffusion) was given
by Hirschfelder [5]:

-3 .
. 2
= LZ MM,D; - Vx;. 2.2)
p - s
j=1
In general, the molar concentration is a function of temperature and pressure. Since in the boundary layer
(we are considering the neighborhood of the critical point) all the parameters except the pressure (dp/dy

= 0) are functions of only one coordinate, the diffusion flux may be expressed in terms of the temperature
gradient
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Fig. 1. Flow of gas around an axially-symmetric body.

Fig. 2. Dependence of the heat-transfer parameter A = (Nu/ Re°-5Pr%f4f)w on the compressibility
(LePe/ Bwpyw) = Bt 1) Ty = 500; 2) 1000; 3) 1500; 4) 2000; 5) 2500°K,

[ o )]

where n is the number of moles in unit volume and Dj is the diffusion coefficient of the muiticomponent
mixture.

Substituting the expression for the diffusion flux (2.3) into Eq. (2.1) we obtain

o= EZ( - mwp, () ] (45 2.4)

The first term in square brackets is the thermal conductivity of the frozen mixture. The second term, as-
sociated with dissociation and ionization processes, is called the thermal conductivity of the reacting
mixture, or the chemical thermal conductivity

chem:_EE( )hMMD (‘Z‘;). (2.5)

The sum of these two coefficients is called the total (effective) thermal conductivity

hett = A -+ Agpore (2.6)

Thus the expression for the specific thermal flux to the wall may be written in terms of the effective
thermal conductivity

' d
— G = (hethy (%) . (2.7)

In the same way we may define the total (effective) specific heat of the air at constant pressure

7 dh AN
Cpeif = (E)p' (2.8)

Since the total enthalpy of the air, allowing for the energy of formation of its constituents, equals

13
h= hic;, (2.9)

the effective specific heat of the air for p = const takes the form

Cpets = Cp + }dh ( ) (2.10)

i=1
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k
where Cp = 2 Cp;Ci is the specific heat of the frozen mixture at p = const. The second term, allowing for
i=1

the additional heat associated with dissociation and ionization processes, represents the specific heat of the
reacting mixture at constant pressure.

3. Transformation of Coordinates. Using the method of total coefficients, we may simplify the sys-
tem of equations representing the equilibrium boundary layer (1.1)~(1.9) by reducing it to the following:

1) continuity equation for the mixture

O oun) + -2 (pry = 0; (3.1)
ox dy
2) momentum equation
ou du dp d Ou
1 — Y —— = — —— —_— — ; 3.2
o TPy dx ay<”ay) 3.2)

3) energy equation

ol ol 0 [ Ay Of 0 1 ) J [ u?
Rl S G (. o 0 . 1— —[—1]. (3.3)
o Ox e oy dy (cpeff ay) * Oy [M( Presi / 0y ( 2 >]

;

Let us consider the flow of gas in the neighborhood of the critical point of an axially-symmetric body
(Fig. 1), using the automodel principle, by virtue of which all the quantities depend simply on the trans-
verse coordinate y, apart from u, the value of which is proportional to the coordinate x.

The system of partial differential equations (3.1)-(3.3) may be reduced to a system of ordinary dif-
ferential equations by using the transformations

y (3.4)

In the new independent variables (n and £) the system (3.1)-(3.3) takes the form:

1) momentum equation

4y 1 g [ 2 — | =0 (3.5)
P
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2) energy equation

/
g (—iﬁa"" . /‘rv/r: .
W\ py NP4 ( g'> +fg =0, (3.6)
2 - Ve 1 Pregs
0 . A - The boundary problem has the following boundary conditions:
8 /o/ =0 f,=0 Ju=0, g=gyu 3.7
6 N N—>oco f(0)>1, g(o0)—1.
4 o —/
4 / 2:5 4. Results of the Calculation, The system of equa-
ZI,’é tions (3.5)-(3.6) with the boundary conditions (3.7) was solved
4 —gf : numerically using the latest data relating to transfer prop-
erties [1] and the thermodynamic properties of air [6].
2 2 4 6 8 0 110 .
Calculations of the heat transfer from the hot gas to the
Fig. 5. Dependence of the reduced spe- wall were carried out over the range of variation of stagna-
cific thermal flux aw®N/ P )1/2, kW / m!-® tion enthalpies corresponding to the ionization region (I,
-bar®? on the stagnation entohalpy I, kJ =40-115-10° kJ/kg). The stagnation pressure and the wall
/ kg of the incident flux: 1) [10]; 2) [9]; temperature were varied over a wide range (p, = 1-100 bar,
3) [11]; 4) [11}; B) [2]; a) authors' cal- Ty = 500-2500°K). As a result of each calculation the values
culation; b) [2]. of the heat-transfer parameter (Nu/ Re“’)W were determined,

this parameter being associated with the specific thermal

_/ Nu Io—lw) I/T
o = (l/R—e )w ( Preit,y waw< dx )0' 4.1)

The results of the calculation are presented in Figs. 2 and 3. Figure 2 shows the logarithmic dependence
of the parameter (Nu/Re’?. P]c":e'f‘lf)W on the quantity (uepe/ Iypy) for various wall temperatures. We see
that in the ionization region the wall temperature has a considerable effect on the heat transfer. In the
critical equation for the heat-transfer parameter

; / b
() A B @.2)
4 Re Jw wPw!/

flux by virtue of the equation

we must therefore introduce the dimensionless wall temperature (Ty, = Ty/273). The curve in Fig. 3
represents the relation between the heat-transfer parameter and the surface temperature. This relation-
ship may be approximated by a linear function to a fair degree of accuracy.

Analysis of the numerical calculations yielded the critical equation

/ 5 — / 0.185
( NRi | =0.763 (0.75 4 2.73-1077T ) (Pros)* (ﬂﬂ—) o 4.3)
VvV Re /o

wPw

Figure 4 shows the dependence of the heat-transfer parameter, referred to the heat-transfer param-
eter for up = const, on the dimensionless quantity (uepe/ HyPy), Which allows for the compressibility of the
gas. The same figure shows someresults obtained earlier for the dissociation region [7] and also for the
ionization region [2, 3]. We see that in the dissociation region our calculation is excellently represented by
the equation

“/ Nu T 04 | B0, \173
Y —o7if1+ 0.07;”) prl —_)
(1/ Re >w ( T ( (TN “4)

e /

given in [8]. Exirapolation of curve (4.4) into the ionization region leads to a considerable deviation from
the calculated and experimental results obtained for this region. For high temperatures, such as (9-15)
10%K, Eq. (4.3) must be used.

Figure 5 shows the dependence of the reduced specific thermal flux on the stagnation enthalpy of the
incident flow of air. In the dissociation region the thermal flux was calculated by (4.4)
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qw( Ry )? =0.712(1+ 00722 P (100 a0 x (1, — 1) (2 L)
Po T, . Po

(4.5)

In this region the theoretical results agree very closely with experiment [92, 10].

In the ionization region the thermal flux was calculated by the critical equation obtained in the present
investigation:

o ( 31) 0763 (0.75 + 273 « 10T ) Pre3® X (1,015 (1,,0,)0%15 (I, — 1) (2 —B"—) . (4.6)
. Po '

Po

Figure 5 also shows the theoretical results of Khoshizaki [2] as well as experimental data from various
authors [2, 11]. Comparison between our own results and those of [2, 3] showed that, despite the con-
siderable difference in transfer coefficients (almost a factor of two), the discrepancy in the specific thermal
flux was no greater than 7-10% (Fig. 5); this is very important, since at high temperatures there are no
reliable data for the transfer coefficients in the ionization region.

Comparison between the results of the calculation and experimental data [2, 11] obtained in elec-
trical-discharge shock tubes showed (Fig. 5) that the results of the calculation agreed with experiment to
an accuracy of 15%.

NOTATION
X,y are the coordinates;
u, v are the velocity components, m/sec;
¢ is the weight proportion of the i-th component;
] is the diffusion flux of the i-th component, kg/m?. sec;
p is the density, kg/m3;
p is the pressure, bar;
T is the temperature, °K;

is the weight proportion of the chemical element;

ol

I
Ma-

|

|

s

k .
K= Y 1y, ﬁ— is the diffusion flux of the chemical element;
i=1 ¢
B is the viscosity of the mixture, kg/m- sec;
M is the molecular weight of the mixture;
M; is the molecular weight of the i-th component;
Dj; is the coefficient of binary diffusion, m?/sec;

is the total enthalpy of i-th component, kJ/kg;

k
1= Yo, +_‘;i‘ is the total enthalpy of the mixture, kJ/kg;
i=1

R is the universal gas constant, J/mole - degK;

Nu is the Nusselt number;

Re is the Reynolds number;

Proge is the effective Prandtl number;

Aeff is the effective thermal conductivity, KW/ m - deg K;
A is the frozen thermal conductivity, kW/m - deg K;
Achem is the chemical thermal conductivity, kW/m - deg K;
dw is the convective specific thermal flux, kW/m?;
drad is the radiant specific thermal flux, kW/m?;

Ry is the radius of nose, m.

Subscripts

w denotes the wall;
e denotes the external boundary;
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eff

Do

10.

11.

denotes the stagnation parameters;

denotes the effective (total);

denotes the component;

denotes the element;

denotes the differentiation with respect to coordinate 7.

LITERATURE CITED

Pieng-Tsai-Ch'eng and A. L. Pindrokh, Voprosy Raketnoi Tekhniki, No, 12 (1962).

Kh. Khoshizaki, Raketnaya Tekhnika, No. 10 (1962).

N. B. Cohen, "Boundary-layer similar solutions and correlation equations for laminar heat-trans-
fer distribution in equilibrium air at velocities up to 41,100 feet/sec,” Tech. Rept., NASA (1961),
NR-118.

V. V. Shehennikov, Zh. Vychis. Mash, i Mat. Fiz., 1, No. 5 (1961).

J. O. Hirschfelder, in: Problems of the Motion of Long-Range Rocket Heads [Russian translation],
1L (1959), pp. 343-364.

A. 8. Predvoditelev, Tables of the Thermodynamic Properties of Air at 200-20,000°K over the Pres-
sure Range 0.001-1000 Atmospheres, Izd. AN SSSR, Moscow (1959); Izd. AN SSSR, Moscow (1957);
Vychis. Tsent., Moscow (1962).

G. A. Fayand F. R. Riddell, in: Gas Dynamics and Heat Transfer in the Piresence of Chemical
Reactions [Russian translation], IL (1962), pp. 190-224,

V. S. Avduevskii et al., Fundamentals of Heat Transfer in Aviation and Rocket Technology [in Russian],
Oborongiz, Moscow (1960).

P. H. Rouse and V. I. Stark, in: Problems of the Motion of Long-Range Rocket Heads [Russian
translation], IL (1959), pp. 277-311,

Yu. A. Polyakov, in: Physical Gas Dynamics, Heat Transfer, and Thermodynamics of Gases at

High Temperatures [in Russian], Izd. AN SSSR, Moscow (1962), pp. 251-260.

P. H. Rouse and J. O. Stankevich, Raketnaya Tekhnika i Kosmonavtika, No. 12 (1963); No. 9 (1965).

149



